Unsatisfying Walks: Solving False QBFs with Local Search
نویسندگان
چکیده
In the past few years, we have seen significant progress in the area of Boolean satisfiability (SAT) solving and its applications. More recently, new efforts have focused on developing solvers for Quantified Boolean Formulas (QBFs). Recent QBF evaluation results show that developing practical QBF solvers is more challenging than one might expect. Even relatively small QBF problems are sometimes beyond the reach of current QBF solvers. We present a new approach for solving unsatisfiable two-alternation QBFs. Our approach is able to solve hard random QBF formulas that other current algorithms cannot handle. Our solver WalkMinQBF combines the power of stochastic local search methods and complete SAT solvers. The solver is incomplete, in that it outputs unsat if a certificate for unsatisfiability is found, otherwise it outputs unknown. We test our solver on the model for random formulas introduced in [3] and the Models A and B introduced in [8]. We compare WalkMinQBF with the state-of-the-art QBF solvers Ssolve and QuBE-BJ. We show that WalkMinQBF outperforms Ssolve and QuBE-BJ in time and in the number of formulas solved. We believe our work provides new heuristic insights that should be useful in complete QBF solvers. As a side result we have developed a stochastic local search algorithm for the minimum unsatisfiability problem (MIN-SAT).
منابع مشابه
Finding Small Unsatisfiable Cores to Prove Unsatisfiability of QBFs
In the past few years, we have seen significant progress in the area of Boolean satisfiability (SAT) solving and its applications. More recently, new efforts have focused on developing solvers for Quantified Boolean Formulas (QBFs). Recent QBF evaluation results show that developing practical QBF solvers is more challenging than one might expect. Even relatively small QBF problems are sometimes...
متن کاملUsing Stochastic Local Search to Solve Quantified Boolean Formulae
We present a novel approach to solving Quantified Boolean Formulae (QBFs), exploiting the power of stochastic local search methods for SAT. This makes the search process different in some interesting ways from conventional QBF solvers. First, the resulting solver is incomplete, as it can terminate without a definite result. Second, we can take advantage of the high level of optimisations in a c...
متن کاملLong-Distance Resolution: Proof Generation and Strategy Extraction in Search-Based QBF Solving
Strategies (and certificates) for quantified Boolean formulas (QBFs) are of high practical relevance as they facilitate the verification of results returned by QBF solvers and the generation of solutions to problems formulated as QBFs. State of the art approaches to obtain strategies require traversing a Q-resolution proof of a QBF, which for many real-life instances is too large to handle. In ...
متن کاملA Proposed Improved Hybrid Hill Climbing Algorithm with the Capability of Local Search for Solving the Nonlinear Economic Load Dispatch Problem
This paper introduces a new hybrid hill-climbing algorithm (HHC) for solving the Economic Dispatch (ED) problem. This algorithm solves the ED problems with a systematic search structure with a global search. It improves the results obtained from an evolutionary algorithm with local search and converges to the best possible solution that grabs the accuracy of the problem. The most important goal...
متن کاملComplexity, Patches and Fitness: A Model of Decentralised Problem-Solving
We present a model of decentralisation of organisational search activity in NK fitness landscapes. The degree of decentralisation is expressed as the number of elements within a patch P. We derive analytical results for landscapes of maximum complexity (K = N-1) for the expected number of local optima for different degrees of decentralisation. The ruggedness of a landscape depends on the search...
متن کامل